NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ

Figure Credit: NASA

NICOLAUS COPERNICUS

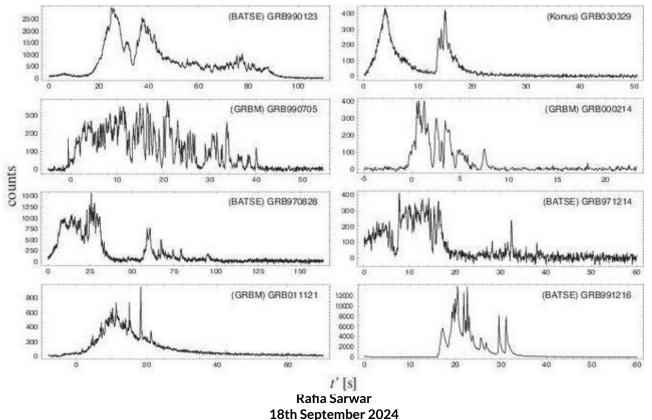
Progenitors of LGRBs: Are single stars enough?

Rafia Sarwar¹, Dorottya S zécsi¹, Koushik Sen¹, Poojan Agrawal², and Hanno Stinshoff¹

¹Institute of Astronomy | Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń, Poland. ² Department of Physics and Astronomy, University of North Carolina, Chapel Hill, USA.

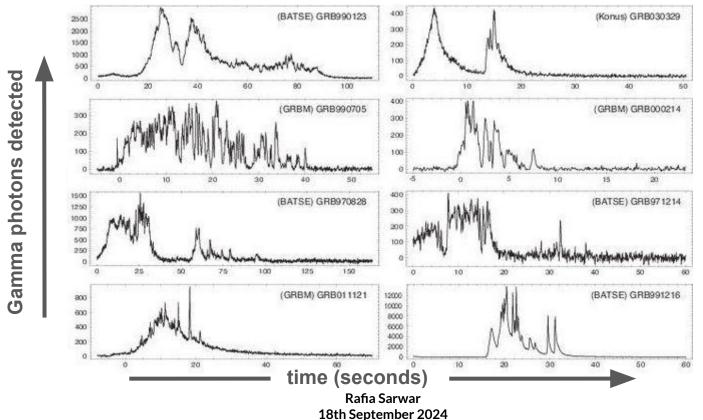
> Rafia Sarwar 18th September 2024 VLT-FLAMES TaranTula Survey Meeting.

Furonean Snace Agency Centre Madrid Snain



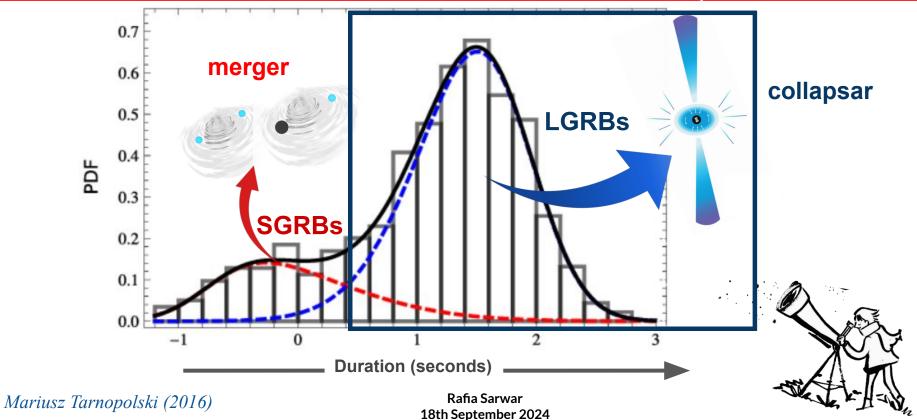
NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

What is a gamma ray burst...



NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ

What is a gamma ray burst...



NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

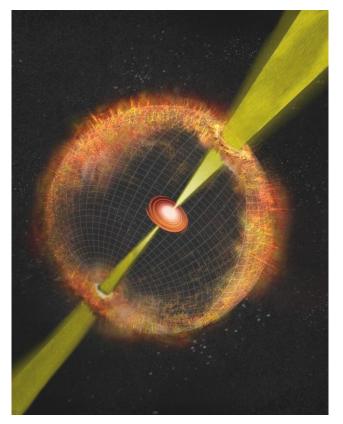
What is a gamma ray burst...

IN TORUŃ

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

How can we produce a LGRB?

What is a <u>collapsar</u>? Small magnetic loops fall towards accretion disk BH Collapsing star Accretion disk anchors PNS the PNS's field to the BH Rotating accretion disl Gamma-ray burst jet Small magnetic loops Large-scale poloidal field lines



NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ Faculty of Physics, Astronor

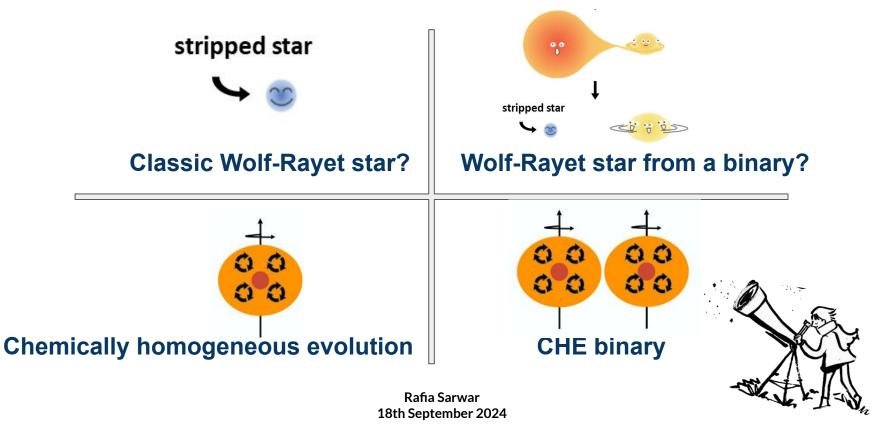
NATION SCIENT CENTR Opus

Conditions for a collapsar

3 conditions for collapsars

- Iron core
- Fast rotation
- no or tiny envelope

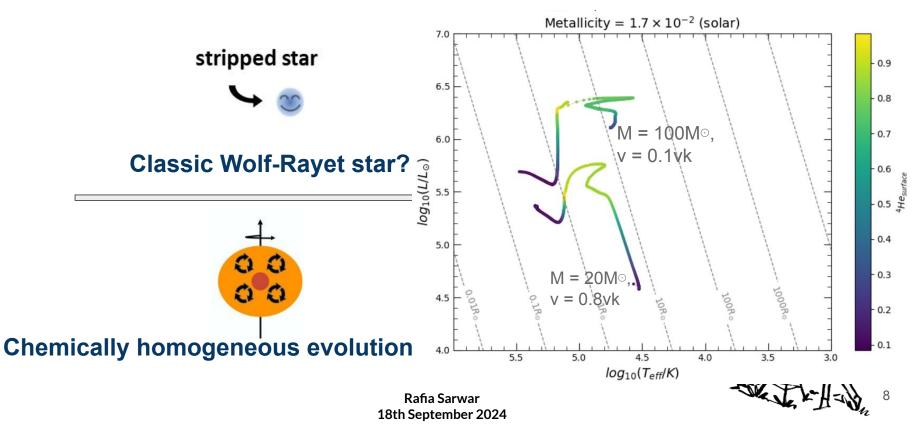
→ We need a spinning naked helium star!



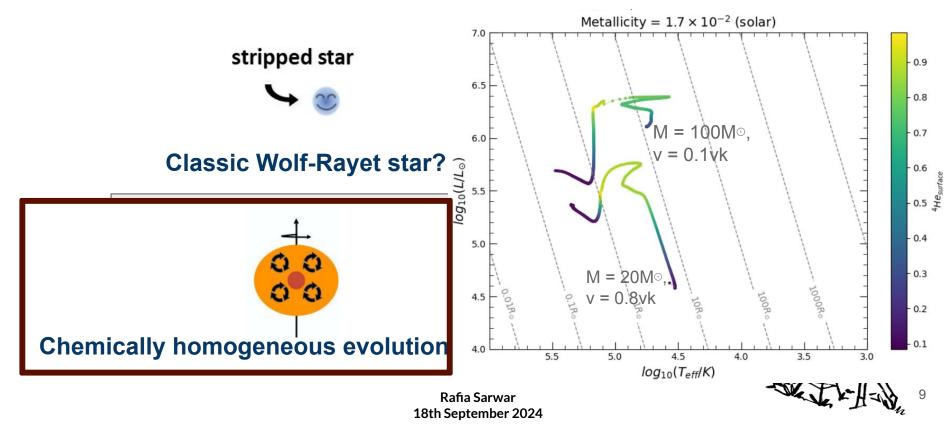
US Nati Scie Opus

ന

Spinning naked Helium star



Spinning naked Helium star



National Science Centre Opus

Spinning naked Helium star

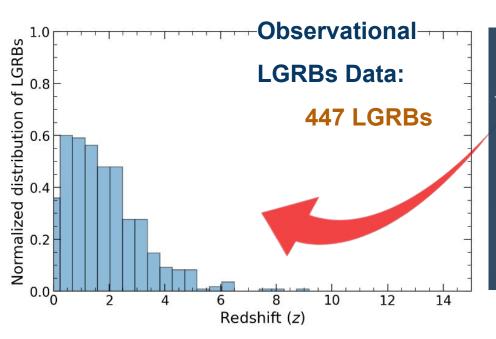
UNIVERSITY IN TORUŃ Faculty of Physics: Astro NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence National Science Centre Opus

10

Observational data

GRBOX : Gamma-Ray Burst Online Index filter by year: [2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [2000] [1999] [1998] [1997] [older] [all]									
GRB	Т90	comments	RA	Dec	z	Gre X	einer	R refs	
180325A 9		Very luminous, reddened afterglow with 2175-A dust bump. Optical observations during main burst peak.	10:29:42.7	+24:27:49.3	2.04			V TOI	
180324A 7	7.2	Possible very weak afterglow	05:06:06.37	+56:42:51.5					
180316A 8	37	Bright early afterglow.	17:41:42.94	+00:44:54.0					
180314B 7	73	Some follow-up, no deep limits.	19:51:32.80	+23:37:26.6					
180314A 5	51.2	Bright UV/optical afterglow; well-observed.	06:37:03.7	-24:29:45.8	1.445				
180311A 2	23	No ground follow-up.	00:13:33.05	-54:29:29.2					
180305A 1	12.5	LAT burst with X-ray/optical afterglow.	03:18:28.33	+32:06:36.2					
180224A 1	10.9	Bright early OT but little further follow-up.	13:30:44.057	+38:04:44.55	•	· ya		· ;; ~	
180210A 4	40	Fermi/LAT burst with afterglow.	00:07:22.02	+18:33:09.9		Ø	λ		
180205A 1	15.5	Bright burst: very bright afterglow. Extensive observations	08:27:16 74	+11:32:30 9	1 409	V			

https://sites.astro.caltech.edu/grbox/grbox. php?starttime=700101&endtime=181231



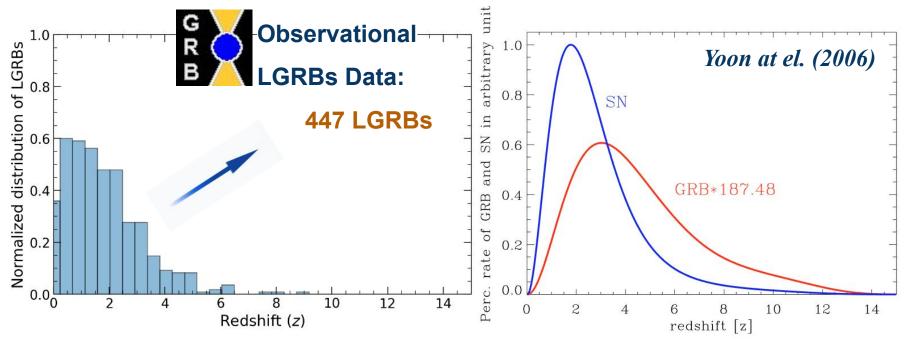
NICOLAUS COPERNICUS

Motivation

GRBOX : Gamma-Ray Burst Online Index

[2018] [2017] [2016] [2015] [2014] [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2003] [2002] [2001] [2000] [1999] [1998] [1997] [older] [all]

GRB	Т90	comments	RA	
180325A	94.1	Very luminous, reddened afterglow with 2175-A dust bump. Optical observations during main burst peak.	10:29:42.7	+2
180324A	7.2	Possible very weak afterglow	05:06:06.37	+5
180316A	87	Bright early afterglow.	17:41:42.94	+0
180314B	73	Some follow-up, no deep limits.	19:51:32.80	+2
180314A	51.2	Bright UV/optical afterglow; well-observed.	06:37:03.7	-24
180311A	23	No ground follow-up.	00:13:33.05	-54
180305A	12.5	LAT burst with X-ray/optical afterglow.	03:18:28.33	+3
180224A	10.9	Bright early OT but little further follow-up.	13:30:44.057	+3
180210A	40	Fermi/LAT burst with afterglow.	00:07:22.02	+1
180205A	15.5	Bright burst; very bright afterglow. Extensive observations.	08:27:16.74	+1


https://sites.astro.caltech.edu/grbox/grbox.ph *p?starttime=700101&endtime=181231*

Motivation

https://sites.astro.caltech.edu/grbox/grbox.ph p?starttime=700101&endtime=181231

PARSEC

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ

FRANEC

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

Market of stellar evolution codes

GENeva stellar Evolution Code MESA GARching **BINSTAR Bonn code** Stellar Yale Rotation **Evolution Evolution Code**

e[i]), r === !1) break Darthmout t.call(e[i], i, e[i]), r === !1) break; STERN **Stellar Evolution** function(e) Code).replace(C.

AREVO Code de Montpellier-Montréal Code Liègeois d'Evolution **Stellaire**

Code

Lyon Evolutonary code

TWIN

Padova

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ Faculty of Physics, Astronor

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

Market of stellar evolution codes **GENeva stellar Evolution Code** TWIN PARSEC GARching **BINSTAR** Bonn code Padova Stellar **Yale Rotation Evolution Evolution Code** Code FRANEC i. e[i]), r === !1) break Darthmouth t.call(e[i], i, e[i]), r === !1) break; STERN **Stellar Evolution** function(e) Code Liègeois Code).replace(C. d'Evolution AREVO Code de Montpellier-Montréal **Stellaire** Lyon Evolutonary code

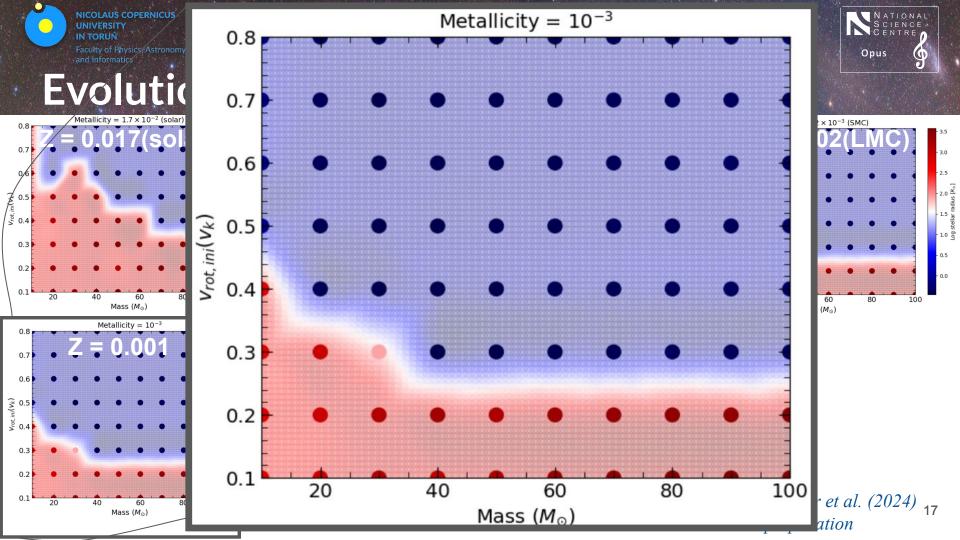
IN TORUŃ

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

Model parameters

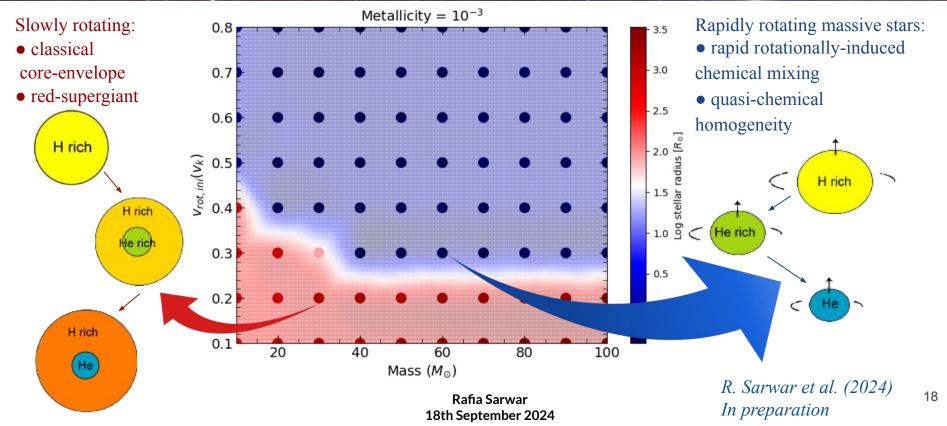
Initial masses	10M ₀	20M₀	30M∘	40	N ₀ 50	0 M ∘	60M∘	70M∘	80M∘	90M∘	100 M ₀
	<u>in e)</u> 										
Metallicities			0.017 (solar)			0.004 0.002 (LMC) (SMC)		0.001	0.0001		0.00001
return e }, trim: b && !b.call(? fun	of it	(e) {	.) 014					
Initial velocity	0.1	1vk 0.	2vk 0	.3vk	0.4 vk	0.5vk	0.6vk	0.7vk	0.8vk]	



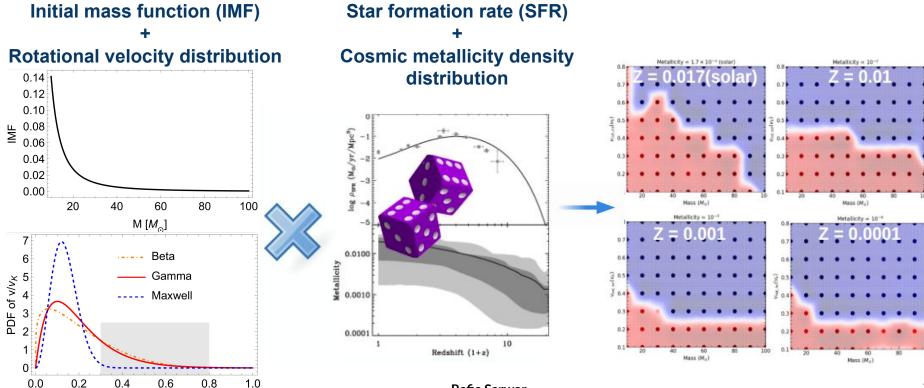


NICOLAUS COPERNICUS UNIVERSITY IN TORUN University

Evolution of massive stars



Evolution of massive stars



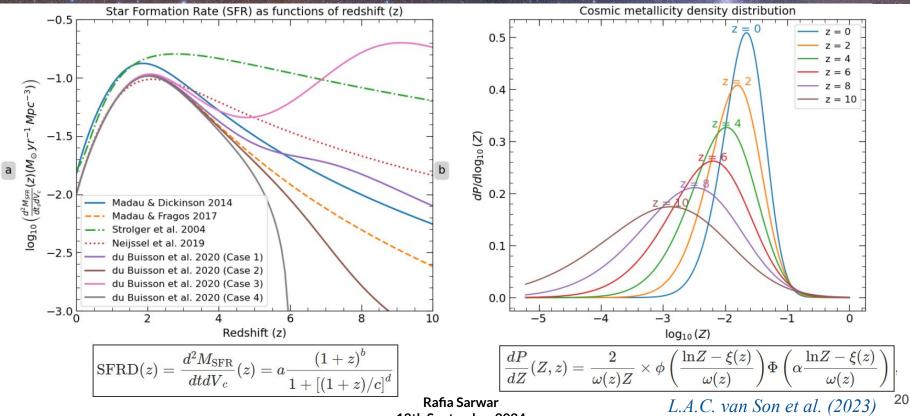
NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

Population synthesis

V/VK

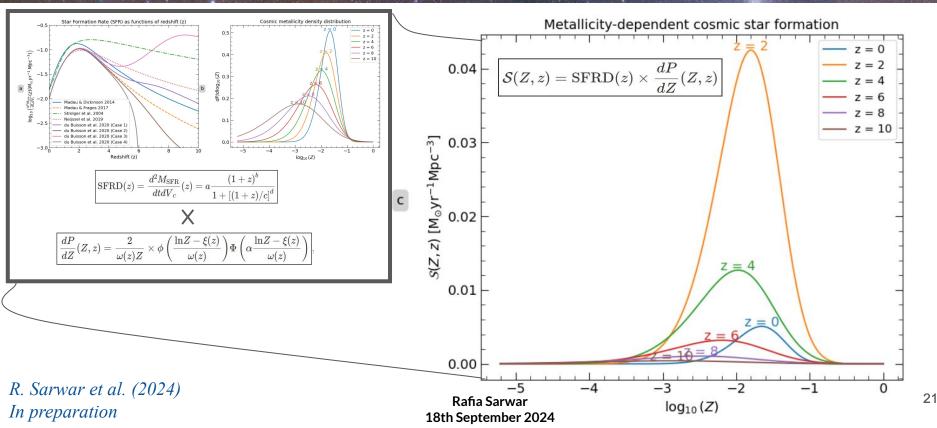
Rafia Sarwar 18th September 2024

Cosmic star formation rate and metallicity distribution


NICOLAUS COPERNICUS

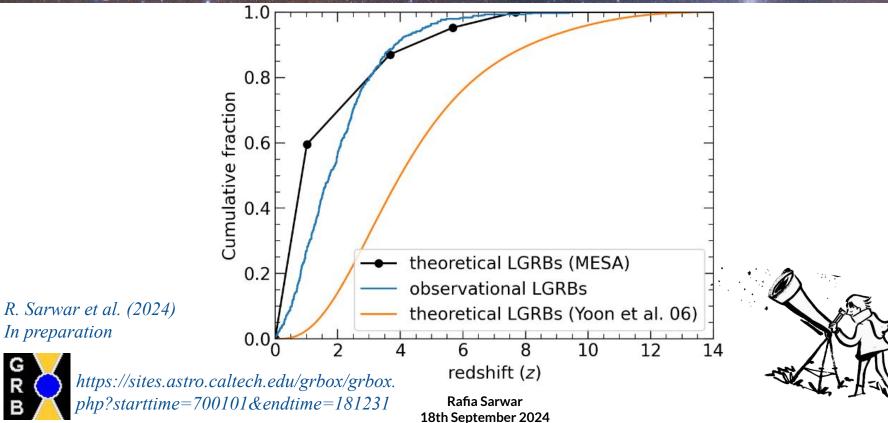
Centre of Excellence

Opus


UNIVERSITY

IN TORUŃ

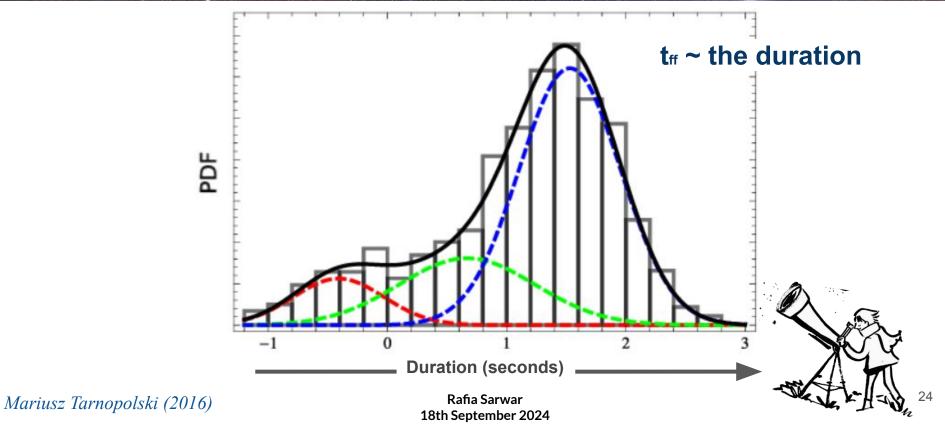
18th September 2024



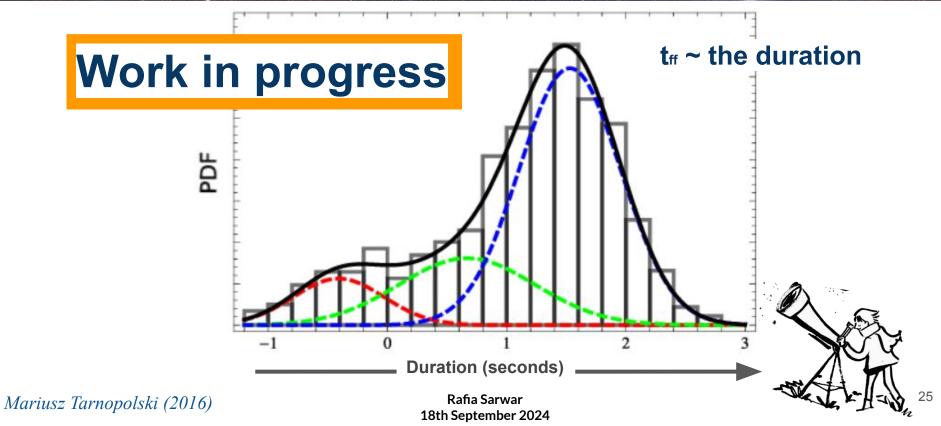
R

Single star models vs observation

- Use different SFR distributions and see which one matches the best with observations
- Excluding PPISNe from stellar models (simulating PPISNe phase
 - not part of models)
- Look into observational biases (collaboration Dr. Christina Thöne)
- Compare with the literature
- Binary models
- Reproducing the duration histogram (\rightarrow next slide)



Reproducing the skewed duration distribution



Reproducing the skewed duration distribution

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

Take home message

Updated theoretical models fit the observations better than Yoon's 2006

- Wind mass loss prescriptions
- Extended initial mass range to 100M
 (instead of 60M
)
- Updated star formation rates
- Cosmic metallicity distribution

Take home message

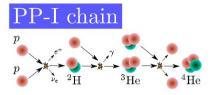
Updated theoretical models fit the observations better than Yoon's 2006

- Wind mass loss prescriptions
- Extended initial mass range to 100M
 (instead of 60M
)
- Updated star formation rates
- Cosmic metallicity distribution

NICOLAUS COPERNICUS UNIVERSITY Centre of Excellence

Thank you ...

Figure Credit: NASA


Mass Loss by stellar winds

The choice of wind mass loss recipe depends on the temperature $T_{\rm eff}$ and surface hydrogen mass fraction $X_{\rm s}$. For hot stars $(T_{\rm eff} > 25 \,\rm kK)$ that are hydrogen rich $(X_{\rm s} > 0.7)$ we adopted the prescription of Vink et al. (2001). For hot hydrogen-poor stars $(X_{\rm s} < 0.4)$ we used the wind of Hamann et al. (1995) divided by ten. We linearly interpolated between the predicted $\log M$ given by both prescriptions in case $0.4 < X_s < 0.7$. For cold stars $(T_{\rm eff} \leq 25 \, \rm kK)$ we used the prescription from Nieuwenhuijzen & de Jager (1990) in case it predicts a mass loss rate higher than Vink et al. (2001). Due to its high opacity, iron is the main driver of stellar winds. We scaled all winds to the iron abundance rather than the metallicity Z. The stellar winds thus scale as $\dot{M} \propto (X_{\rm Fe}/X_{\rm Fe,\odot})^{0.85}$, where the factor 0.85 is the metallicity dependence found by Vink et al. (2001). Here, $X_{\text{Fe},\odot} = 0.00124$ (Grevesse et al. 1996).

Nuclear burning

 $p+p \rightarrow^{2}H + e^{+} + \nu_{e}$ (twice) $p+^{2}H \rightarrow^{3}He + \gamma$ (twice) $^{3}He+^{3}He \rightarrow^{4}He + p + p$

$$\rightarrow^{12}C + p \rightarrow^{13}N + \gamma$$

$$^{13}N \rightarrow^{13}C + e^{+} + \nu_{e}$$

$$^{13}C + p \rightarrow^{14}N + \gamma$$

$$^{14}N + p \rightarrow^{15}O + \gamma$$

$$^{15}O \rightarrow^{15}N + e^{+} + \nu_{e}$$

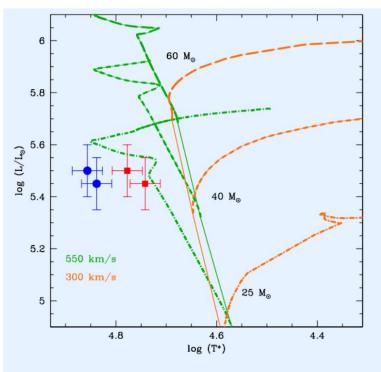
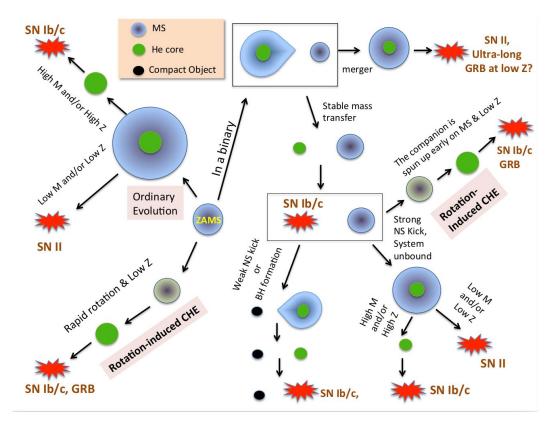

$$^{15}N + p \rightarrow^{12}C + ^{4}He$$

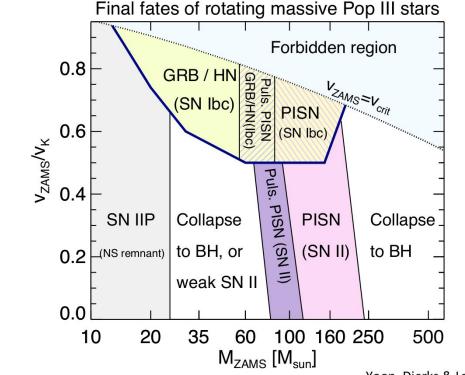
Figure 1.3: Main reactions involved in the proton-proton chain and the CNO cycle. The PP-chain is the main source of energy for low mass stars ($M \leq 1.5 M_{\odot}$), while hydrogen burning in more massive stars is dominated by the CNO cycle.

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ University Centre of Excellence

Evidence for CHE stars

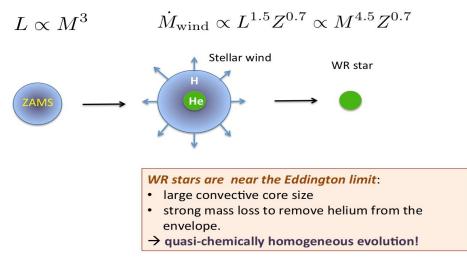


Martins et al. 2013


Fate of rapidly rotating massive stars

Fate of rapidly rotating massive stars

Yoon, Dierks & Langer 2012



Mass Loss by Winds:

Standard scenario for massive star evolution

Mass Loss by Winds: Standard Scenario for Massive Star Evolution

Specific angular momentum

Initial spin of a collapsing star is written as $a_{core} = \frac{J_{core}c}{GM_{core}^2}$

By Bardeen et al. (1972), radius at ISCO, scaled by GMBH/c.c is

 $r_{\rm isco} = 3 + z_2 \pm \left[(3 - z_1)(3 + z_1 + 2z_2) \right]^{1/2}$

where z_1 and z_2 are determined by the spin according to:

$$z_1 = 1 + (1 - a^2)^{1/3} \left[(1 + a)^{1/3} + (1 - a)^{1/3} \right]$$
$$z_2 = (3a^2 + z_1^2)^{1/2}.$$

The specific angular momentum at ISCO, scaled by GM_{BH}/c, can be written as: $j_{\rm isco} = \frac{2}{3^{3/2}} \left[1 + 2(3r_{\rm isco} - 2)^{1/2} \right]$

Fraction of shell collapsing directly $\theta_{\rm disk}$ $r_{\rm isco}(a,M)$; Fraction of shell forming a disk

NICOLAUS COPERNICUS

Opus

UNIVERSITY

Centre of Excellence

IN TORUŃ

University

ROTATION ALONG Z AXIS

Figure Credit: Batta & Ramirez-Ruiz (2019)

Why do homogeneous stars evolve bluewards

 $R \propto \mu^{2/3} M^{0.81}$

with homology relation and CNO cycle

$$L \propto \frac{\mu^{7.5} M^{5.5}}{R^{0.5}}$$

-

with homology relation and Kramer's opacity law

$$\longrightarrow$$
 $T_{\rm eff} \propto \mu^{1.5} M^{0.75}$